在小的故障電流或過載情況下借助綜合保護裝置由真空接觸器斷開同路來提供保護,即F-C回路的保護由熔斷器的一次保護和綜保裝置的二次保護配合共同完成。熔斷器與真空接觸器(通過綜保裝置的曲線)的保護配合基于熔斷器的最小熔斷時間一電流特性曲線和綜保裝置的時間一電流特性曲線。專業高壓熔斷器在耐受能力上,真空接觸器的額定開斷電流值應大于綜合保護裝置的最小特性與熔斷器的全開斷特性的交點電流值,同時,真空接觸器應能耐受熔斷器的最大限流電流峰值,在熱穩定方面應能耐受開斷能量,這樣,才能保證真空接觸器能夠分擔F-C 回路中的部分保護功能。為了提高保護的可靠性,熔斷器的最小開斷電流應不超過最小交接點電流,且希望熔斷器的最小開斷電流應是盡量小。南京高壓熔斷器最小開斷電流以下的電流應由真空接觸器斷開,在電流低于熔斷器最小開斷電流時,熔斷器無損傷的電弧耐受時間應長于聯用的真空接觸器脫扣時間。在為用電負荷提供保護時,對于電動機類負荷,電動機的堵轉電流應在真空接觸器的開斷電流以內,熔斷器不應開斷。
擴散是弧柱內自由電子、正離子逸出弧柱以外,到周圍冷介質中去的過程。擴散是由于帶電質點的不規則熱運動,以及空間電荷的分布不均勻,使電弧中的高溫離子由密集的空間向密度小,溫度低的方向擴散。專業高壓熔斷器電弧和周圍介質的溫度差以及離子濃度差越大擴散作用也越強。擴散出來的離子,因冷卻而相互結合,成為中性質點顯然,如果游離過程大于去游離過程,電弧將繼續燃燒,并越燒越旺,如果去游離過程大于游離過程,電弧便越來越小,最后電弧將熄滅。由此分析,熄滅電弧的基本方法是設法冷卻電弧,設法加強復合和擴散形成的去游離過程。高壓限流熔斷器熄滅電弧的基本原理,就是當熔體元件熔化而出現電弧后,迫使電弧深入到周圍填料石英砂構成的縫隙中去,根據狹縫滅弧原理,電弧與石英砂緊密接觸,使電弧急劇冷卻,從而迫使電流急劇下降到零。當預期電流非常大,熔體元件熔化、蒸發、出現間隙及電弧時,這一過程在非常短的時間之內就已經完成,熔體元件在來不及向周圍填料石英砂傳熱的情況下,就已經熔斷并形成電弧。
干式變壓器運行中產生的中性點接地方式及其對過電壓保護的影響,損耗轉換為熱的形式,使絕緣的溫度升高,在較高溫度下絕緣會產生裂解,因此一般高溫將使電老化加速。如果絕緣材料的質量或選擇達不到絕緣等級的要求,就會使絕緣壽命縮短,即絕緣的機械、電氣性能逐漸變壞,此過程即為熱老化。干式變壓器的損壞,一般多由熱老化開始,但絕緣中溫度分布是不同的,因此絕緣的熱老化主要決定于最熱點溫度。專業高壓熔斷器干式變壓器運行中的工作溫度不應超過絕緣材料允許溫度,從而使絕緣具有經濟合理的壽命。由于絕緣材料存在某些缺陷,以及澆注工藝不夠完善造成的,在干式變壓器樹脂絕緣中總是存在氣隙或氣泡,從而導致絕緣中局部放電,它也是樹脂絕緣干式變壓器老化的主要因素。中性點接地方式及其對過電壓保護的影響,工礦企業3~10kV供電系統有中性點不接地、經消弧線圈接地、經電阻接地等多種中性點接地方式,系統中性點接地方式的不同將直接影響到系統設備絕緣水平、南京高壓熔斷器過電壓水平、過電壓保護元件的選擇、繼電保護方式系統的運行可靠性、通信干擾等各個方面3~10kV電網的中性點接地方式對過電壓及其保護器的選擇有較大影響。
多采用中性點不接地的運行方式,在這種條件下使用阻容吸收器,由于相對地電容值增大,電容電流也將隨之大幅度增大,這時需重新考慮中性點接地的接地方式及零序保護的配置。當火力發電廠單機容量為300MW及以上時,高壓廠用電系統的單相接地電容電流較大,多采用中性點經低電阻接地的方式,相對于大得多的低電阻接地的阻性電流來說,阻容吸收器電容電流的影響就不那么大了。專業高壓熔斷器所以在高壓廠用電系統的中性點采用低電阻接地的接地方式的大容量機組中,采用阻容吸收器作為限制過電壓的措施在理論上已經成為了一種可行的措施,但針對不同系統,其具體參數需要進一步的運行測試檢驗。制過電壓的保護措施及過電壓保護裝置的選針對中性點低電阻接地系統,用于F-C回路的阻容過電壓吸收器可以采用不接地系統相同的電容值和電阻值,即可以取相間電容約為0.1~0.5F,相間電阻值約為100~500,相地電容約為0.2~1F,相地電阻值約為50~25002。由于南京高壓熔斷器單相接地故障時不存在相電壓升高為線電壓的問題,阻容過電壓吸收器宜采用星形接線方式,而不再是傳統上適用于中性點非接地系統的“三叉戟”型式。
熱線:029-68590633
Q Q:604296408(徐經理)
郵箱:xasurong@163.com
地點:陜西省西安市高新區丈八五路2號